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Abstract

We describe a new implementation of an adaptive multi-tissue tetrahedral mesh generator targeting anatomic modeling of Arteri-

ovenous Malformation (AVM) for surgical simulations. Our method, initially constructs an adaptive Body-Centered Cubic (BCC)

mesh of high quality elements. Then, it deforms the mesh surfaces to their corresponding physical image boundaries, hence, im-

proving the mesh fidelity and smoothness. Our deformation scheme, which builds upon the ITK toolkit, is based on the concept

of energy minimization, and relies on a multi-material point-based registration. It uses non-connectivity patterns to implicitly

control the number of the extracted feature points needed for the registration, and thus, adjusts the trade-off between the achieved

mesh fidelity and the deformation speed. While many medical imaging applications require robust mesh generation, there are few

codes available to the public. We compare our implementation with two similar open-source image-to-mesh conversion codes: (1)

Cleaver from US, and (2) CGAL from EU. Our evaluation is based on five isotropic/anisotropic segmented images, and relies on

metrics like geometric & topologic fidelity, mesh quality, gradation and smoothness. The implementation we describe is open-

source and it will be available within: (i) the 3D Slicer package for visualization and image analysis from Harvard Medical School,

and (ii) an interactive simulator for neurosurgical procedures involving vasculature using SOFA, a framework for real-time medical

simulation developed by INRIA.
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1. Intoduction

Image-to-Mesh (I2M) conversion algorithms are widely used for the quantitative analysis of patient-specific images

using the Finite Element (FE) method. This has significant implications in many areas, such as image-guided therapy

[1–3], interactive surgery simulation for training young clinicians, and endovascular flow diversion for aneurysm

geometries [4]. The FE method is essential in modeling tissue deformation for these applications. An intrinsic
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difficulty of generating meshes from isosurface-based data (i.e. parametric surfaces/volumes, level-sets, segmented

multi-labeled images) is the processing and recovery of the object geometry. General-purpose mesh generators (for

solid and geometric modeling applications) expect that the object boundary is parameterized, i.e., it is defined by

means of constructive solid geometry primitives, or explicitly defined, e.g., through the boundary discretization, as a

collection of patches. In order to convert the isosurface data into a tetrahedral mesh, one can either (1) recover the

parametrized object surface and follow up with a conventional mesh generation technique, or (2) use a mesh generation

method, which operates directly on this type of data. In this paper we present an open-source implementation of an

adaptive multi-tissue tetrahedral mesh generator (CBC3D). The CBC3D operates directly on segmented multi-labeled

image data pertinent to Arteriovenous Malformation (AVM), i.e., tangled bundles of abnormal and arbitrary thin blood

vessels connecting arteries and veins in the brain. Specifically, the CBC3D meshing method targets the anatomical

modeling of AVM for surgical simulations.

The I2M software should meet the requirements of three important components for AVM simulations: (1) level-

of-detail of tissue morphology (to satisfy the computational complexity of the collision detection module responsible

to managing correctly intra-surgical motion), (2) accuracy of the representation of the geometries (to capture faithful

response of the biomechanical properties of the tissues involved in the simulation), and (3) visual reality (to meet the

clinical requirements of the surgical simulation).

Medical surgical simulations are classified into two main categories. Predictive simulation is part of current and

emerging practices in health care that are working towards precision medicine. The goal for predictive simulation is

to predict and optimize the outcome of an intervention by using patient-specific, pre-operative image data. Interactive

simulation, on the other hand, is part of the effort from medical schools and hospitals to reduce health care costs. Costs

are reduced by training surgical residents using virtual environments to achieve certain skill levels without imposing

risks on real patients. The input to both categories of surgical simulations is based on patients medical images like

MRI, fMRI, CT and micro-CT. The required analysis for the anatomic modeling step of these two categories is slightly

different. Predictive simulations require high geometric, topologic and material fidelity at the cost of large-scale mesh

generation which likely takes place off-line with respect to the intervention. In contrast, the interactive simulations

require real-time mesh generation to meet the time constraints imposed by end-to-end computations in near-haptic

rates. These real-time requirements compromise the fidelity of the anatomic modeling. Despite their differences,

there are a number of requirements, like element quality, mesh gradation and multi-tissue, multi-resolution meshing,

that are common to both types of simulations. In this paper we focus on these common requirements, and, most

importantly, we focus on the high geometric, topologic and material fidelity. The real-time constraints imposed by the

interactive simulations will be addressed elsewhere in the near future.

In turn this translates to the following requirements for analysis of the mesh generation. The I2M conversion

needs to balance trade-offs between several criteria: (i) minimize the mesh size and maximize the element quality

by utilizing proper mesh gradation and tissue-specific multi-resolution, (ii) without sacrificing geometric & topologic

fidelity, (iii) while maintaining smoothness of the mesh to reflect a certain degree of reality, and (iv) at the same

time, allow the upstream numerical computations for collision detection and biomechanical Finite Element Analysis

to complete within the time constraints imposed by the surgical simulation.

2. Background

There are various meshing methods that operate on isosurface data. Some methods are based on a Delaunay re-

finement scheme [5,6]. CGAL, an open-source software library, provides a Delaunay method for meshing segmented

multi-labeled images. Our group developed a 3D Delaunay parallel I2M conversion algorithm that recovers the iso-

surface of the biological object with geometric and topological guarantees, while also providing good shape elements

[7]. The problem with the Delaunay refinement is that almost flat tetrahedra, called slivers, can survive. There are a

number of optimization techniques to eliminate slivers [5,8,9], and some of them have been shown to produce very

good dihedral angles in practice.

A large number of meshing methods are based on lattice space-tree (e.g., octree in 3D) decomposition, thus pro-

viding adaptively sized, high quality elements for a number of medical applications [10,11]. Usually, a regular back-

ground mesh tessellates the image and the surface is recovered by finding the points of intersection of the mesh with

the surface of the object. Then the mesh vertices are warped onto the model surface, or new vertices are inserted on
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the surface, and the mesh is locally modified. The achieved mesh quality depends on thresholds for deciding whether

to warp or insert a vertex. In some cases, a mesh decimation step is applied to an octree-based mesh to improve the

element shape and/or modify the mesh size [12,13]. In [14] an efficient octree Dual Contouring (DC) method was

presented to resolve topology ambiguity for multiple-material domains by analyzing a hybrid octree with both cubic

and tetrahedral leaf cells.

Another heuristic approach, generates an adaptive Body-Centered Cubic (BCC) background lattice, and then warps

the surfaces of the lattice to the boundaries of the object using either a mass spring system, a finite element constitutive

model, or an optimization scheme [15]. [16] creates an adaptive BCC lattice, projects the vertices outside the object

to the boundary, and then uses a Delaunay approach to tessellate the object, followed by a smoothing optimization

step. The method uses the lattice vertices only for estimating the initial positions of the mesh vertices. In [17], an

advancing front technique generates the volumetric mesh using the vertices of a Face-Centered Cubic (FCC) lattice.

Our previous work [18,19] extends [15] to fairly regular multi-material geometries, and employs a physics-based

mesh deformation scheme to warp the surfaces of a BCC mesh to the boundaries of the object. The deformation

scheme takes fidelity, smoothing, and quality into account. The advantage of using a physically based deformation

scheme is that it can forecast how the mesh is likely to respond to the deformations it will experience during a

simulation.

In this paper, we present additional improvements for the reliable and faithful representation of multiple materi-

als and their corresponding resolutions, i.e., CBC3D is a multi-tissue and multi-resolution mesh generator of fairly

complex geometries. We introduce a new implementation of the mesh deformation scheme presented in [19], which

builds upon the ITK toolkit and improves the overall robustness and portability of the CBC3D method. The new

approach relies on a multi-material point-based registration, and uses non-connectivity patterns to implicitly con-

trol the number of the extracted feature points needed for the registration, and to adjust the trade-off between the

achieved mesh fidelity and the deformation speed. We evaluated and compared our implementation with two other

open-source meshing codes: CGAL v4.5.2, and Cleaver v1.5.4. Our qualitative/quantitative evaluation is based on

isotropic/anisotropic segmented multi-labeled pre-operative MR images, including a tumor, a nidus, a pair of lateral

ventricles, and an AVM. In this evaluation, we exclude any non publicly available meshing methods developed by our

group [7,12]. The CBC3D software is open-source and available within: (i) the 3D Slicer package for visualization

and image analysis (single-tissue version; this multi-tissue code will become available before the IMR meeting), and

(ii) an interactive simulator for neurosurgical procedures involving brain AVM, developed in SOFA, a framework for

real-time medical simulation (multi-tissue version).

3. Method

Our approach uses a segmented multi-labeled image as input, and produces an adaptive tetrahedral mesh. Subsec-

tion 3.1 describes the segmentation algorithm used to obtain the AVM labeled image. Subsections 3.2, 3.3 describe

the steps of the implementation: (1) BCC mesh generation and refinement, and (2) mesh deformation, respectively.

3.1. AVM Segmentation

Before segmenting the vessels from the medical images, we apply a skull stripping algorithm that removes the skull

bone from the image. We employ the Brain Extraction Tool (BET) for this purpose [20]. The level set segmentation

algorithm for the vessels structures uses the Vascular Modeling Toolkit (VMTK) [21]. Level sets are a kind of

deformable model in which the deformable surface is represented by a 3D function whose contour at level zero is the

surface in question. In order to extract the surface from the image we run the output image through Marching Cubes

[22] with level zero. We use a fast marching initialization, consisting of placing a set of seeds and a set of targets in

the image. A front is then propagated from the seeds until the first target is met at which point the region covered

by the front is the initial deformable model. This type of initialization is effective when it is necessary to segment

round objects such as aneurysms (e.g. by simply placing one seed at the center, and one target on the wall, the volume

will be initialized). The output segmented image contain labels each one representing a single tissue. These labeled

images are then used as input to the meshing algorithm.
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3.2. BCC Mesh Generation and Refinement

Image pre-processing. Our previous work [18,19], re-samples the input image to an isotropic unit spacing image,

to avoid the transformation of index to physical coordinates, and thus, to make the implementation simpler and faster.

Although this approach is sufficient for fairly regular geometries, in the case of complex data (e.g. AVM), the image

down-sampling can cause an invalid image topology. Figure 1 illustrates such an example. On the contrary, the

CBC3D operates on either isotropic or anisotropic data, and optionally performs only global up-sampling.

(a) AVM before down-sampling (b) AVM after down-sampling

Fig. 1. Brain Arteriovenous Malformation (AVM) segmentation, before and after down-sampling. The red circles indicate locations of disconnectiv-

ity or a non-manifold image topology. The image spacing (mm) before and after down-sampling is [0.879, 0.879, 0.879] and [1, 1, 1], respectively.

The image intensity at non-integer pixel positions is computed with a nearest neighbor interpolator.

BCC lattice construction. The bounding box of the input object is discretized with a regular BCC lattice. The

distance between the vertices of the lattice can be adjusted with the parameter BCC size (Table 3). Next, the tetrahedra

located completely outside of the object are discarded. The resulting elements are of the best quality possible with the

regular space tiling [16].

Adaptive refinement. The lattice is refined using a red (regular) - green (irregular) subdivision (Figure 2). We refine

only those elements that cross the object surface or the tissue interfaces. Initially, all lattice tetrahedra are labeled with

a red color. A red tetrahedron can be subdivided into eight children (1:8 regular refinement), and each child is labeled

with a red color, as shown in Figure 2(a). There are three choices for the internal edge of the tetrahedron. If the shortest

one is selected, the resulting eight child tetrahedra are exactly the same with the parent tetrahedron except the size is

one half of the parent’s size. The red subdivision will lead to T-junctions at the newly created edge midpoints where

neighboring tetrahedra are not refined to the same level. To remove the T-junctions, a green (irregular) subdivision,

including the three cases depicted in Figures 2(b)-2(d), is performed. To quantitatively evaluate the similarity between

the sub-mesh and the tissue region, we define S 1 as the set of all voxels in the sub-mesh, S 2 as the set of all voxels

in the tissue region, and S 1 ∩ S 2 as the point-set shared by the sub-mesh and the tissue region (common region).

Ratio F1 =
|S 1∩S 2 |

|S 1|
corresponds to the similarity between the common region and the sub-mesh, and ratio F2 =

|S 1∩S 2 |

|S 2|

corresponds to the similarity between the common region and the tissue region. The refinement criterion is defined as

follows: Refine the sub-mesh if F > F1 or F > F2, where F ∈ (0, 1] is the desired fidelity (Table 3). F1 and F2 rely

on the number of voxels inside a tetrahedron. In the case where no voxels can identify inside an element, we locally

up-sample the region defined by the tetrahedron’s bounding box.

(a) 1 : 8 (b) 1 : 2 (c) 1 : 4 (d) 1 : 4

Fig. 2. Red-green refinement. 8, 2, and 4, denote the number of tetrahedrals after the refinement.

Candidate mesh selection. In this step we once again revise the tetrahedral elements which are located close to the

surface of the object, and selectively discard those elements which are located completely outside.
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3.3. Mesh Deformation

The refinement step guarantees the high quality of the BCC mesh (i.e. worse (min, max) dihedral angles (30◦,

116.5◦)). However, this mesh does not meet some of the requirements for AVM simulations (i.e. accuracy of the

geometric representation, certain degree of visual reality). In this paper, we propose a new implementation of the mesh

deformation scheme presented in [19], to deform the mesh surfaces to their corresponding physical image boundaries,

and thus, to achieve a higher fidelity and a smoother surface. The mesh deformation performs a number of iterations

specified by the user (Table 3). The larger the number of iterations, the higher the fidelity and the smoother the surface.

Point-based registration. The deformation scheme relies on a point-based registration, and builds upon the ITK

toolkit, thus, improving the overall reliability and portability of the CBC3D method. The registration is performed

between a source and a target point-set. The first set contains the surface/interface vertices of the mesh. The second

set contains the surface/interface voxels of the image object. In a typical iteration i, for each source point, its potential

corresponding target point is located in the neighborhood of the source point. Next, a FE bio-mechanical model

is built, the estimated correspondences are applied as constraints to the model, and a linear system of equations

is solved to compute the displacements on the mesh vertices. Then, the mesh is updated by adding the computed

displacements to the current coordinates of the vertices, and the procedure is repeated until the iteration reaches the

maximum number. During the deformation, inverted (flipped) elements might occur, because the magnitude of the

correspondence between a source and a target point might be larger than a local element size. The local element size

is computed as the average length of the tetrahedral edges adjacent on a source point. In order to reduce the number

of possible inverted elements, all estimated correspondences are restricted to be less or equal to a local element

size. Besides, after each deformation the tetrahedral elements are checked for inversion. If inverted elements are

survived, the mesh deformation stops, and the method recovers the mesh coordinates of the previous iteration. Figure

3 illustrates an example of the mesh deformation step.

(a) HD0 = 1.79 mm (b) HD3 = 1.31 mm (c) HD7 = 0.96 mm (d) HD10 = 0.91 mm

Fig. 3. Nidus mesh during a deformation step with 10 iterations. (a) depicts the initial undeformed BCC mesh (i = 0). (b), (c), (d), depict the

deformed mesh at iterations i = 3, 7, 10, respectively. HDi denotes the mesh fidelity in terms of a Hausdorff Distance metric, at iteration i. The

smaller the HD, the higher the fidelity. As the number of iterations advances, the mesh exhibits a higher fidelity and a smoother surface.

Adjustable number of target points. Our previous work [19] cannot control the number of the extracted target points

needed for the registration. Our new implementation can implicitly control the number of the target points, using non-

connectivity patterns. A non-connectivity pattern avoids the selection of neighboring voxels which are connected via

a “vertex” (26 non-connectivity), an “edge” (18 non-connectivity), or a “face” (6 non-connectivity), and thus prohibits

the extraction of points that are too close to each other. The “no” option disables the non-connectivity patterns, so it

maximizes the number of points. Figure 4 depicts the extracted target points for each pattern. Table 1 illustrates the

influence of each pattern on the performance of the mesh deformation. The larger the number of the target points,

the more accurate the representation of the object’s boundaries/interfaces (Figure 4), and thus, the more precise the

registration, and the mesh deformation (Table 1). On the other hand, the smaller the number of the target points, the

less accurate, but faster the deformation (Table 1). In our experimental evaluation, we use a “face” pattern (Table 3)

to balance the deformation accuracy and the speed.

Multi-labeled source/target points. In the registration phase, for each source point, its potential corresponding target

point is identified by searching the neighborhood of the source point. Our previous implementation [19], associates

each source/target point with a unique image label to denote which tissue it belongs to and, therefore, to restrict the

search to the target points which have the same label with the source point. However, in the case of multi-labeled

images, a mesh vertex can be adjacent to tetrahedrals of different labels; thus, a unique label is not sufficient to denote

which tissues a vertex belongs to. For this reason, the new implementation associates each source/target point with a
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label-set, instead of a unique label. Specifically, a source point is associated with the labels of the adjacent tetrahedrals

on this source point (vertex), and a target point with the labels of the neighboring voxels sharing a face with this target

point (voxel). Then, the search for correspondences is restricted between pairs of source and target points with same

label-sets.

(a) Segmentation (b) “Vertex” (21510) (c) “Edge” (26387) (d) “Face” (47306) (e) “No” (91906)

Fig. 4. The extracted target points from a brain-nidus segmentation, depicted for each non-connectivity pattern (“Vertex”, “Edge”, “Face”, and

“No”). Each pattern results to a different number/density of points. In the parenthesis we report the number of the points. For simplicity, we depict

the points in only one volumetric axial image slice.

Table 1. Mesh deformation performance on a nidus geometry (Figure 3), for each non-connectivity pattern. HD is a Hausdorff Distance metric.

HD10 corresponds to the mesh fidelity after a deformation step of 10 iterations. HD0 = 1.79 mm is the mesh fidelity before the deformation. The

smaller the HD value, the higher the fidelity. The experiment conducted on a machine with an Intel i7-2600@3.40 GHz CPU, and 16 GB of RAM.

Pattern #Target Points HD10 (mm) Time (sec)

“Vertex” 2770 0.97 21.01

“Edge” 3498 0.91 22.57

“Face” 6213 0.88 26.19

“No” 11755 0.84 35.27

4. Software Implementation

The CBC3D meshing algorithm is available as: (i) a stand-alone ITK library (multi-tissue version), (ii) a 3D Slicer

extension (single-tissue version; the multi-tissue code will become available before the IMR meeting), (iii) a SOFA

plugin within an interactive simulator (multi-tissue version).

(a) Mesh generation panel (b) Mesh deformation panel (c) Mesh before deformation (d) Mesh after deformation

Fig. 5. CBC3D extension in 3D Slicer. (a), (b) depict the extension’s GUI. (c), (d) depict a ventricle mesh generated with the extension.

4.1. 3D Slicer Extension

3D Slicer is a free, open-source C++ software application widely used in the medical computing research commu-

nity. It builds upon VTK and ITK, for visualization and image processing, respectively. Slicer facilitates the clinical

translation of medical computing research ideas by providing developers with an easy to use framework for image

analysis and visualization. It also provides a template framework that allows for the creation of customized and so-

phisticated user interfaces. The CBC3D meshing method is available as an extension in 3D Slicer (Figure 5). Slicer
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supports different types of extensions which can be built outside of the source tree and bundle together one or more

modules. The CBC3D extension can be downloaded using Slicer’s Extension Manager1.

4.2. SOFA-based Interactive Simulator

The purpose of the CBC3D image-to-mesh generator is to be used to generate anatomically correct AVM models

for surgical simulations. Interactive simulations involving deforming solids are widely used in physically-based sim-

ulations. In particular, accurate and efficient simulation tools are critical for the design and development of surgical

simulations due to the real-time computation requirements and physics fidelity. However, because of the complexity

of the problem, these simulations are computationally intensive, making interactive and real-time constraints a very

difficult problem. Broadly, the main components for most interactive medical simulators require knowledge in the

following areas: bio-mechanical and anatomical modeling, collision detection, haptics and visualization. A virtual

anatomical model constitute a precise computerized description of a human organ that is commonly generated from

medical images, like MRI or CT. In this case it describes an AVM pathology containing draining vessels, feeding

arteries and the nidus of vessels bundles as well as surrounding. The brain matter interacts with vessels, fluid and

possibly other rigid objects, thus a very important aspect of the simulator is the ability to provide anatomically correct

models of the structures involved in the virtual surgical procedure. At the same time, the anatomical model should

contain the minimal amount of elements needed to accurately describe the small vessel features.

In this study, we developed an interactive simulator for neurosurgical procedures, involving brain vasculature. The

simulator builds upon the SOFA open-source framework for real-time medical simulation. The simulator’s develop-

ment framework consists of FEM biomechanical anatomical modeling and volumetric meshing of vascular structures,

coupling collision detection and response with haptic feedback, and GPU-based implementations enabling real-time

simulation. It is outside the scope of this paper to extensive talk about the AVM simulator. It will appear elsewhere.

SOFA Plugin. The CBC3D method is also available as a plugin in SOFA. Our simulator uses this plugin to generate

a tetrahedral mesh of the AVM pathology. The plugin mechanism exposes SOFA’s API and allows us to use all the

necessary features and data structures without the need to tightly integrate the CBC3D with the rest of the SOFA

library. Figure 6(a) depicts the scene graph of a simple SOFA simulation using the CBC3D plugin to generate a mesh

from a segmented image. The visual or collision model is crated by mapping a surface triangle topology on the surface

of the tetrahedral mesh.

root

VisualStyle
Visual style

DefaultAnimationLoop

DefaultVisualManagerLoop

InteractiveCamera
baseCamera

Tetrahedrals

EulerSolver
solver

CBC3D
CBC3D_plugin

MechanicalObject
Mechanical Object

UniformMass
mass

TetrahedronSetTopologyContainer
Tetrahedra topology

TetrahedronFEMForceField
FEM

Surface Triangles

IdentityMapping
identityMap

TriangleSetTopologyContainer
Container

TriangleSetTopologyModifier
Modifier

TriangleSetTopologyAlgorithms
GeomAlgo

Tetra2TriangleTopologicalMapping
Mapping

Visu

OglModel
Visual triangles

(a) (b)

Fig. 6. (a): Scene graph of a sofa simulation using the CBC3D plugin. (b): Conceptual depiction of the hybrid FEM method.

Collision Detection. SOFA’s current capabilities in terms of reliable collision detection and response computation

are limited. It only performs discrete collision, i.e., it checks for collisions between the mesh at fixed time steps.

Furthermore, it has limited capabilities for self-collisions. In our simulator, we employ a continuous collision detection

method (Self-CCD) developed in Gamma Lab at the University of North Carolina. This algorithm performs inter and

intra objects queries using various culling techniques (i.e. representative triangles [23], connectivity [24] and other

non-penetration filters [25]) to speed up computation and robustness.

FEM Simulator. Tissue response is handled by a corotational tetrahedral FEM formulation. Work is undergoing

to integrate a hybrid FEM approach to increase performance, depicted in Figure 6(b). The hybrid FEM increases the

1 https://www.slicer.org/slicerWiki/index.php/Documentation/4.4/SlicerApplication/ExtensionsManager
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performance of the tissue response calculation by utilizing two formulations on a single mesh: a linear formulation for

fast computation, albeit less accurate, and a non-linear formulation for more realistic simulations near the interaction

area. It then couples these two formulations seamlessly by updating the feedback forces at the interface of the two

formulations [26]. With AVM surgery simulation involving various tissues with different physical properties, the

hybrid FEM promises improvements in performance on the physics engine by up to 50%. Figure 7 shows preliminary

results of our interactive simulator.

(a) AVM pathology (b) AVM model (c) Cautery tool (d) Collision detection-interaction

Fig. 7. Interactive simulator for neurosurgical procedures involving brain vasculature, in SOFA. The simulator uses a CBC3D plugin to generate a

volumetric mesh of the vascular structures.

5. Results

We evaluated the CBC3D method on five segmented images. Table 2 lists the image data of this study. Cases 1-3

are anisotropic (non-uniform spacing); cases 4-5 are isotropic (uniform spacing). Case 1 is a single material geometry,

while cases 2-5 are multi-material geometries. We compared our implementation with two other open-source codes:

CGAL v4.5.2 and Cleaver v1.5.4.

The CGAL is a meshing engine based on a Delaunay refinement scheme [27]. It first constructs a boundary mesh

from the image and then a volume mesh given the surface mesh as an input. Before the refinement, a mechanism

of protecting balls is set up on 1-dimensional features, if any, to ensure a fair representation of those features in the

mesh. This mechanism also guarantees the termination of the refinement process independently of the input geometry.

The refinement process is driven by criteria concerning either the size or shape of mesh cells and surface facets. It

terminates when there are no more mesh cells or surface facets violating the criteria. The refinement is followed

by a mesh optimization phase [8] to remove slivers and provide a good quality mesh. Table 3 lists the CGAL input

parameters used in this study.

Cleaver [11] is a multi-material lattice-based meshing method. Initially, it constructs a high-quality BCC lattice

that covers the input image. Next, it locally warps or cuts the lattice so it will conform to multi-material arbitrary

surfaces. The violation parameters αshort, αlong decide the trade-off between snapping/warping and stencil cleaving;

hence, they implicitly control the size of the mesh. In this study, we use the default violation parameters (Table 3) that

achieve a worse case minimum dihedral angle of 2.76◦ and worst case maximum dihedral angle of 175.42◦.

Table 3 lists CBC3D’s input parameters. We chose a lattice spacing approximately equal 8-10 times the input

image spacing, and a fidelity value F = 0.95 for the refinement criterion (subsection 3.2). Finally, we used an “edge”

non-connectivity pattern and five deformation iterations to balance the mesh fidelity and the speed of the deformation.

Table 2. Segmented image data of this study.

Case Type Tissues Image Spacing (mm) Image Size (voxels)

1 Anisotropic Brain 0.85 × 0.85 × 2.50 286 × 286 × 90

2 Anisotropic Brain-Nidus 0.85 × 0.85 × 0.72 256 × 256 × 195

3 Anisotropic Brain-Tumor 0.48 × 0.48 × 1.00 384 × 512 × 186

4 Isotropic Brain-Ventricles 1.00 × 1.00 × 1.00 240 × 240 × 134

5 Isotropic Brain-AVM 0.87 × 0.87 × 0.87 256 × 256 × 134

5.1. Qualitative Results

Mesh gradation. Figure 8 depicts cross sections of all the generated tetrahedral meshes in this study. Each cross

section illustrates the mesh gradation and the conformity between the sub-meshes of different tissues (cyan and red).
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Table 3. Input parameters for the experiments in this study.

Method Parameter Value Description

CBC3D

BCCsize 8 lattice spacing (mm)

F 0.95 fidelity to tissue boundaries

nonConnectivity “edge” pattern for the target point extraction

Niter 5 number of deformation iterations

CGAL

f acet angle 30 lower bound for the angles (degrees) of the surface mesh facets

f acet size 2 upper-bound for the radii of the surface Delaunay balls

f acet distance 2 upper bound for the face distance

cell radius edge ratio 1.5 upper bound for the radius-edge ratio of the tetrahedra

cell size 2.5 upper-bound for the circumradii of the tetrahedra

Cleaver
αshort 0.357 threshold along a diagonal edge for nonviolating edge-cuts

αlong 0.203 threshold along an axis-aligned edge for nonviolating edge-cuts

The CBC3D and Cleaver methods generate graded meshes consisting of smaller elements near the tissue bound-

aries/interfaces, and larger elements in the homogeneous regions. Cleaver exhibits a more aggressive gradation than

CBC3D. On the other hand, CGAL, for the specific input parameters, produces meshes without any variation on the

tetrahedral size near the tissue interfaces. CGAL ignores the ventricle material in case 4, and thus, it generates a

single-tissue mesh (column 8(d)).

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5

Fig. 8. Qualitative results on mesh gradation. Each row depicts cross sections of tetrahedral meshes from a single method. Each column represents

a single case. In each case we use the same cross section plane for all the methods. Cyan represents the sub-mesh of the brain tissue. Red represents

the sub-mesh of the other tissue.

Geometric mesh fidelity. Figure 9 depicts the achieved geometric mesh fidelity on three image slices: axial, sagit-

tal, and coronal. The green, yellow, and red lines, illustrate the intersections between the surface/interface of the

CBC3D, CGAL, and Cleaver meshes, respectively, and the image slice. The closer the intersection to the physical

boundary/interface, the higher the fidelity. In the specific image slices depicted in Figure 9, the CBC3D (green) and

CGAL (yellow) methods exhibit a higher geometric fidelity compared to the Cleaver method (red). The latter seems

to produce slightly shifted meshes in relation with the segmented object in the image slices. Because CGAL generates

a single-tissue mesh for case 4, the yellow line describing the intersection between the interface of the brain-ventricle

mesh and the image slice is missing (column 9(d)).
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Topologic mesh fidelity. We evaluated the achieved topologic mesh fidelity on a complex AVM pathology (Figure

10(a)). The red circles in Figures 10(b)-10(d) locate the AVM mesh regions with a poor topologic fidelity. The

CBC3D demonstrates the highest fidelity among the three methods, preserving almost all the vascular structures in

the mesh (Figure 10(b)). CGAL resolves only sufficiently large vessels (Figure 10(c)). Cleaver exhibits a higher

topologic fidelity than CGAL, but it does not preserve some thin vessels in five different locations (Figure 10(d)).

Mesh smoothness. Figure 11 compares the smoothness of a brain mesh generated by the three methods. Cleaver

captures more features on the brain surface because it generates a larger number of triangles than CBC3D and CGAL.

However, Cleaver’s mesh exhibits a lower fidelity because it is slightly shifted compared to the position of the brain

depicted in the image. The is illustrated clearly in Figure 9(c) and verified by the HD metric in Table 4.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5

Fig. 9. Qualitative results on (geometric) mesh fidelity. From top to bottom row: axial, sagittal, and coronal image slices. From left to right

column: Case 1-5. Gray represents the brain segmentation. White represents the segmentation of the other tissue. Green, yellow and red illustrate

the intersection between the surfaces/interfaces of the CBC3D, CGAL and Cleaver meshes, respectively, and the image slice. The closer the

intersection to the physical image boundaries/interfaces, the higher the fidelity on the specific slice.

(a) AVM segmentation (b) CBC3D (c) CGAL (d) Cleaver

Fig. 10. Qualitative results on (topologic) mesh fidelity. (a): AVM extracted from case 5 (Table 2). (b), (c), (d): CBC3D, CGAL, and Cleaver

tetrahedral mesh, respectively, for this AVM pathology. The red circles indicate regions where the image topology is not preserved in the mesh.

5.2. Quantitative Results

We accessed the achieved mesh quality in terms of the minimum, maximum dihedral angles [28,29]. Ideally, the

minimum dihedral angle should be large, and the maximum dihedral angle should be small. We access the achieved

mesh fidelity in terms of a publicly available Hausdorff Distance (HD) metric [30]. The smaller the HD value, the

higher the fidelity. For a multi-tissue mesh, the HD is computed as: HD = max (HD1,HD2, . . . ,HDn), where n is the

number of the tissues, HDi is the two sided Hausdorff Distance of sub-mesh i, and i = 1, 2, . . . , n. HDi is computed

between two point-sets: the first set contains the surface vertices of sub-mesh i; the second set contains the voxels on

the surface of tissue i.
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(a) Brain segmentation (b) CBC3D (c) CGAL (d) Cleaver

Fig. 11. Qualitative results on mesh smoothness. (a): Brain segmentation from case 3 (Table 2). (b), (c), (d): CBC3D, CGAL, and Cleaver surface

mesh consisting of 18018, 28098, and 443276 triangles, respectively, for this brain segmentation. In (d) we do not visualize the triangle’s edges,

due to their large number.

Table 4 presents the quantitative results. Cleaver achieves the highest average mesh quality, with (min, max)

dihedral angles (12.61◦, 148.13◦). CGAL’s optimization phase aims at eliminating slivers providing good shaped

tetrahedra with slightly worse quality than Cleaver. The CBC3D generates meshes of sufficient quality with average

(min, max) dihedral angles (4.81◦, 172.56◦). Our implementation does not provide any theoretical angle bounds for

the deformed mesh, but it guarantees a superior element quality during the red-green refinement, with worse (min,

max) dihedral angles (30◦, 116.5◦). In the future, we will introduce an optimization step based on local element

transformations and vertex repositioning, to further improve the quality of the smoothed mesh.

Our meshing method achieves the highest fidelity in this study. In terms of a Hausdorff Distance metric, CBC3D

exhibits on average 3.79 and 1.32 times higher fidelity compared to CGAL and Cleaver, respectively (Table 4). CGAL

achieves a low fidelity in case 4 (46.54 mm), and case 5 (21.35 mm) because, in the former, it ignores the lateral

ventricles (Figures 8(d), 9(d)), and in the latter, it does not accurately preserve the vessels structures (Figure 10(c)).

Also, CBC3D keeps the element count low. It generates on average about 1.1 times more, and 6.3 times fewer

elements compared to CGAL and Cleaver, respectively (Table 4). CBC3D and CGAL provide an explicit control on

the element size, via parameters BCCsize, and f acet size, cell size, respectively. On the other hand, Cleaver implicitly

controls the mesh size with the violation parameters αshort, αlong (Table 3).

Table 4. Quantitative evaluation results. The dihedral angle ∈ (0◦, 180◦) denotes the mesh quality. The larger the minimum angle or the smaller the

maximum angle, the higher the mesh quality. The HD metric denotes the mesh fidelity. The smaller the HD, the higher the fidelity.

Case
#Tetrahedra Dihedral angle (min, max) HD (mm)

CBC3D CGAL Cleaver CBC3D CGAL Cleaver CBC3D CGAL Cleaver

1 69101 414470 2550628 (12.20◦ , 157.67◦) (12.01◦ , 162.27◦) (10.88◦ , 152.92◦) 3.47 3.21 6.38

2 500777 376077 3238752 (0.21◦, 179.68◦) (12.06◦ , 161.86◦) (9.49◦, 153.51◦) 6.22 7.66 5.42

3 294005 516927 3276161 (0.29◦, 179.57◦) (12.03◦ , 163.02◦) (11.34◦ , 153.15◦) 4.11 3.37 5.03

4 541943 346337 2629208 (11.18◦ , 166.19◦) (5.43◦, 170.53◦) (25.06◦ , 126.94◦) 3.02 46.54 5.56

5 952986 350449 3235942 (0.18◦, 179.72◦) (5.42◦, 171.07◦) (6.23◦, 154.14◦) 4.87 21.35 6.32

Average 471762 400852 2986138 (4.81◦, 172.56◦) (9.39◦, 165.83◦) (12.61◦ , 148.13◦) 4.33 16.42 5.74

In this study, all the experiments were conducted on a machine with an Intel i7-2600@3.40 GHz CPU, and 16 GB

of RAM. For a relatively small multi-tissue mesh (case 3, Table 4), the CBC3D completes in 272.88 seconds (i.e.

63.59+ 208.70+0.59 seconds for the mesh generation & refinement, deformation, and I/O, respectively). For a larger

multi-tissue mesh (case 5, Table 4), the CBC3D completes in 530.39 seconds (i.e. 94.56 + 434.10 + 1.73 seconds for

the mesh generation & refinement, deformation, and I/O, respectively). This CBC3D version does not address any

kind of performance issues in terms of time efficiency. In our future work, we will improve the CBC3D execution

time by introducing a Structured Adaptive Mesh Refinement (SAMR) scheme [31], and we will conduct an extensive

performance evaluation on the three meshing methods.

In summary, from our previous work on lattice-based meshing, we showed that quality, fidelity and size criteria,

are in conflict (see Table 1 in [12]). This qualitative/quantitative evaluation shows that among the methods in this
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study, the CBC3D meshes: (1) represent most accurately the geometry/topology of the image object, (2) keep the

element count low, and (3) exhibit an acceptable element quality; thus, are suitable for anatomic modeling of AVM

for interactive surgical simulations.

6. Summary and Conclusion

We presented an open-source implementation of an adaptive multi-tissue tetrahedral mesh generator customized for

anatomic modeling of AVM for surgical simulations. Our approach, initially, generates an adaptive BCC mesh of high

quality elements, from a multi-labeled segmented image. Then, it deforms the mesh surfaces to their corresponding

physical image boundaries, to improve the mesh fidelity and smoothness. We introduced a new implementation of

a mesh deformation scheme, which builds upon the ITK toolkit, improving the overall reliability and portability of

our method. The deformation scheme relies on a multi-material, point-based registration, and uses non-connectivity

patterns to implicitly control the number of the extracted image features needed for the registration. As a result, it

balances the trade-off between the achieved mesh fidelity and the deformation speed. Our software is available as a

stand-alone ITK library (multi-tissue version), as an extension in 3D Slicer (single-tissue; the multi-tissue code will

become available before the IMR meeting), and as a SOFA plugin within an interactive simulator for neurosurgical

procedures involving brain AVM (multi-tissue).

We compared our implementation with two other open-source meshing codes: CGAL v4.5.2 and Cleaver v1.5.4.

We reported qualitative/quantitative results on the geometric/topologic fidelity, the mesh gradation, smoothness and

quality, obtained from five isotropic/anisotropic images. The evaluation indicated that our technology provides well

graded, smooth meshes, of reasonable size, that reflect a certain degree of visual reality, without compromising the

geometric/topologic fidelity of the anatomic modeling. The CBC3D meshes accurately conform to the object’s sur-

faces/interfaces, and preserve the majority of the image features in complex geometries pertinent to AVM. In terms of

a Hausdorff Distance metric, the CBC3D exhibits on average 3.79 and 1.32 times higher fidelity, compared to CGAL

and Cleaver methods, respectively. Qualitative results are consistent with these data.

Additionally, we will introduce a Structured Adaptive Mesh Refinement (SAMR) scheme [31] to improve the

performance and the gradation of the CBC3D method. SAMR, initially discretizes the image domain with a uniform

mesh, and then it generates new finer sub-meshes (components) near the areas where the physics are “changing”

(e.g. AVM blood flow simulation in regions of interest). SAMR uses an independent PDE solver in each of the

mesh components, and accesses the validity of the numerical results. If the numerical solution satisfies the analysis

requirements then the refinement stops; otherwise SAMR discretizes the mesh with a finer resolution until it obtains

an acceptable solution. Besides, each mesh component has its own solution vector which is computed independently

from the solution of the other mesh components. This is important for the parallelization of the SAMR, where each

mesh component is associated to a single core/node and the under-utilized cores/nodes (e.g. those that compute the

PDE solution in smaller number of cells or mesh points) can request automatically additional work from the rest of

the cores/nodes.
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